31 December 2012
Kurt E Müller
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751012/
(...)
These skin conditions associated with Lyme Borreliosis are characterised by pronounced histopathological changes of the collagen fibres, but also occasionally the elastic fibres in their connective tissue structures [6,1,9,12,13].
(...)
During the late phase, disappearance of elastic fibres leads to atrophy [1, 3, 6, 35]. B. burgdorferi sensu lato was detected in 63% of patients with LSA [12].
(...)
Borrelia are capable of breaking down soluble and insoluble ground substance within the extracellular matrix [51]. They activate metalloproteases, cause collagen to dissolve and can colonise as microcolonies in collagen fibres [52]. They inhibit the regeneration of collagen promoted by fibronectin, and hence delay the healing process or prevent it completely [53]. Binding to adhesins such as glucosamine glycan-binding protein [54], fibronectin-binding protein [55] and the proteoglycan decorin [11, 56, 57] are described. The last is probably responsible for the destruction of collagen, since direct binding to collagen I and II has not been detected. Mice with decorin deficiency were resistant to Borrelia [58].
(...)